交通事故と運転者と自動車とは、どんな関係にあるのか？

1 自動車事故の概要

1.1 自動車乗車中の死傷者

平成6年の自動車乗車中の死者数は4,482人（全交通事故死者数の42.1%）、死傷者数は510,257人（全交通事故死傷者数の57.2%）で、昭和54年（※）に比べ死者数で1,484人、死傷者数で210,183人増加している（表一）。

1.2 車種別死者数及び死傷者数の構成率

表一 自動車乗車中の死者数、死傷者数の比較

<table>
<thead>
<tr>
<th></th>
<th>死者数</th>
<th>死傷者数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>自動車乗車中</td>
<td>全体</td>
</tr>
<tr>
<td>昭和54年</td>
<td>2,998人</td>
<td>8,466人</td>
</tr>
<tr>
<td>平成6年</td>
<td>4,482人</td>
<td>10,549人</td>
</tr>
<tr>
<td>増減</td>
<td>+1,484人</td>
<td>+2,183人</td>
</tr>
</tbody>
</table>

※昭和54年：近年で交通事故死者数が最も少なかった年

図一 車種别死者数及び死傷者数の構成率

- 普通乗用車
- 軽用車
- その他乗用車
- 取引・大型貨物車
- 普通貨物車
- 輕貨物車
（当事者区分は道路交通法の区分による。）

死者
- 58.2%
- 7.1%
- 10.3%
- 13.2%

死傷者
- 66.9%
- 8.3%
- 8.4%
- 13.7%
交通事故における運転者と車両との相関

平成4〜6年の交通事故統計データと自動車登録データを用いて「交通事故における運転者と車両との相関」について、次の分析を行った。

(1) 分析の評価指標

表-2 評価指標一覧

<table>
<thead>
<tr>
<th>評価指標</th>
<th>自動車の種別</th>
<th>乗用車のクラス別</th>
</tr>
</thead>
<tbody>
<tr>
<td>車両1万台当たりの乗員死亡事故台数</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>車両1万台当たりの乗員死亡事故台数</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>1億走行キロ当たりの乗員死亡事故台数</td>
<td>O</td>
<td>✕</td>
</tr>
<tr>
<td>1億走行キロ当たりの乗員死亡事故台数</td>
<td>O</td>
<td>✕</td>
</tr>
<tr>
<td>乗員死亡事故車両1,000台当たりの乗員死亡事故台数</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>乗員死亡事故車両1,000人当たりの運転者の運転者の死数</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

(2) 自動車の種別と事故の相関に関する分析結果

ベルト着用乗客をみると、全乗客の場合と比べて、死亡事故台数がかなり低くなることにより、各車種間の差が小さくなっている。この傾向は、死亡事故（または死者数）関連の評価指標において認められ、シートベルトの着用効果を示している。

① 自動車1万台当たりの乗員死亡事故台数

全乗客での自動車1万台当たりの乗員死亡事故台数を車種別に比較すると、普通貨物車と普通乗用車が自動車全体よりも高く、軽貨物車、軽乗用車、小型乗用車は自動車全体と同じ様な値を示し、小型貨物車は自動車全体よりも低くなっている（図-2）。

注記1：死亡事故台数とは、その車両の乗員が死亡した場合1台と数える。ただし、複数の乗員が死亡しても1台とする。また、ベルト着用乗員死亡事故台数とは、その車両のベルト着用乗員が死亡した場合1台と数える。ベルト着用乗員が死亡した場合は数えない。ただし、複数のベルト着用乗員が死亡しても1台とする。

注記2：走行キロは、調査車両の分類が乗用車、貨物車、軽乗用車、軽貨物車等に限定されており、乗用車のクラス別のデータがないため分析できなかった。

（走行キロは運輸省統計資料「自動車輸送統計月報」より集計。）
自動車1万台当たりの乗員死傷事故台数
全乗員での自動車1万台当たりの乗員死傷事故台数を車種別に比較すると、乗用車系が自動車全体より高く、貨物車系が自動車全体より低くなっている（図－3）。

1億走行キロ当たりの乗員死亡事故台数
1億走行キロ当たりの乗員死亡事故台数の3年間の推移をみると、小型・普通乗用車および軽乗用車では減少傾向にあるが、貨物車では横ばい状態である（図－4）。

1億走行キロ当たりの乗員死亡事故台数の比較
また、車種別にみると軽乗用車、軽貨物車が他の車種に比べ高くなっている。

1億走行キロ当たりの乗員死傷事故台数
1億走行キロ当たりの乗員死傷事故台数の3年間の推移をみると、軽貨物車では減少傾向があるが、他の車種では増加傾向である（図－5）。

1億走行キロ当たりの乗員死傷事故台数の比較
また、車種別にみると軽乗用車、小型・普通乗用車、軽貨物車が小型貨物車、普通貨物車に比べ高くなっている。
⑤ 乗員死傷事故車両1,000台当たりの乗員死亡事故台数

乗員死傷事故車両1,000台当たりの乗員死亡事故台数は、普通乗用車、普通貨物車、軽貨物車が、自動車全体より高く、小型貨物車は自動車全体と同じ様な値を示し、小型乗用車、軽乗用車は自動車全体より低くなっている（図－6）。

⑥ 人身事故関与車両の運転者1,000人当たりの運転者の死者数

全乗員での人身事故関与車両の運転者1,000人当たりの運転者の死者数は、軽貨物車、普通貨物車が自動車全体より高く、軽乗用車、普通乗用車は自動車全体と同じ様な値を示し、小型乗用車、小型貨物車は自動車全体より低くなっている（図－7）。

図－6 乗員死傷事故車両1,000台当たりの乗員死亡事故台数の比較（平成6年）

図－7 人身事故関与車両の運転者1,000人当たりの運転者の死者数の比較（平成6年）

③ 乗用車のクラス別と事故の相関に関する分析結果

自動車全体の乗員死亡事故台数の約66%、乗員死傷事故台数の約75%を占める乗用車についてさらに詳細に分析するために、車体形状、排気量、使用形態等を考慮して乗用車を8つのクラスに分類して比較分析を行った（表－3）。

① 乗用車1万台当たりの乗員死亡事故台数

全乗員での乗用車1万台当たりの乗員死亡事故台数をクラス別に比較すると、スポーツ&スペシャルティ、セダンCは乗用車全体より高く、ファミリー軽乗用車、セダンAは乗用車全体と同じ様な値を示し、他のクラスは乗用車全体より低くなっている（図－8）。

図－8 乗用車1万台当たりの乗員死亡事故台数の比較（平成6年）
② 乗用車1万台当たりの乗員死傷事故台数
全乗員での乗用車1万台当たりの乗員死傷事故台数をクラス別に比較すると、スポーツ＆スペシャリティ、セダンC、ファミリー軽乗用車は乗用車全体より高く、セダンA、セダンBは乗用車全体と同じ様な値を示し、他のクラスは乗用車全体より低くなっている（図-8）

図-9 乗用車1万台当たりの乗員死傷事故台数の比較（平成6年）

③ 乗員死傷事故車両1,000台当たりの乗員死亡事故台数
全乗員の乗員死傷事故車両1,000台当たりの乗員死亡事故台数をクラス別に比較すると、スポーツ＆スペシャリティ、1BOXは乗用車全体より高く、セダンA、セダンCは乗用車全体と同じ様な値を示し、他のクラスは乗用車全体より低くなっている（図-10）。

図-10 乗員死傷事故車両1,000台当たりの乗員死亡事故台数の比較（平成6年）

④ 人身事故関与車両の運転者1,000人当たりの運転者の死者数
全乗員での人身事故関与車両の運転者1,000人当たりの運転者の死者数は、スポーツ＆スペシャリティは乗用車全体より高く、ファミリー軽乗用車、セダンA、セダンCは乗用車全体と同じ様な値を示し、セダンB、ワーク、RVは乗用車全体より低くなっている（図-11）。

図-11 人身事故関与車両の運転者1,000人当たりの運転者の死者数の比較（平成6年）
交通事故における事故要因の90％以上は人的要因であるといわれている。この人的要因をふまえて、乗用車のクラス別の主な特徴を以下に示す（紙面の都合により、分析結果の全ては紹介していない）。

① ファミリー軽乗用車
昼間事故の比率が49.2％で他のクラスに比べ高い。運転者は女性比率が47.4％で高い。事故類型でみると、車両相互事故の比率が68.7％で、車両単独事故の半分近くが正面衝突事故、出合頭事故が多くなっている。車両単独事故の比率は28.8％で、危険認知速度の平均値は約60km/hで乗用車で一番低い。

② セダンA
昼間事故の比率は61.4％である。運転者は女性比率が22.7％でファミリー軽乗用車について高く、24歳以下の若者比率が40.7％で高くなっている。事故類型でみると、車両相互事故の比率が52.7％で、この中では正面衝突、出合頭事故が多くなっている。車両単独事故の比率は46.8％で、危険認知速度の平均値は約70km/hである。

③ セダンB
昼間事故の比率が59.3％である。運転者は30歳～49歳の年齢階の比率が33.9％、50歳～64歳の比率が23.3％で中年、壮年の比率が高い。事故類型でみると、車両相互事故の比率が56.8％で、この中では正面衝突、出合頭事故の比率が高い。車両単独事故の比率は42.7％で、危険認知速度の平均値は約75km/hである。

④ セダンC
昼間事故の比率が71.5％で高く、特に2時～6時の深夜から早朝にかけての事故が全体の61.8％を占めている。運転者は24歳以下の若者の比率が40.2％、30歳～49歳の比率が27.7％で高い。事故類型でみると、車両単独事故の比率が55.7％で高く、危険認知速度の平均値は約80km/hでスポーツ＆スペシャリティ同様に高くなっている。最高速度違反の比率が43.9％で高い。

a. 屋夜別死亡事故台数の比率

<table>
<thead>
<tr>
<th></th>
<th>格付</th>
<th>夜</th>
</tr>
</thead>
<tbody>
<tr>
<td>セダンA</td>
<td>58.3</td>
<td>41.7</td>
</tr>
<tr>
<td>セダンB</td>
<td>58.3</td>
<td>41.7</td>
</tr>
<tr>
<td>セダンC</td>
<td>71.5</td>
<td>28.5</td>
</tr>
<tr>
<td>スペシャリティ</td>
<td>74.9</td>
<td>25.1</td>
</tr>
</tbody>
</table>

⑤ スポーツ＆スペシャリティ
他のクラスに比べ夜間事故の比率が74.9％で高く、特に2時～6時の深夜から早朝にかけて事故が全体の62.4％を占めている。運転者は24歳以下の若者の比率が71.7％で高い。事故類型でみると、車両単独事故の比率が65.1％で高く、危険認知速度の平均値は約85km/hで他のクラスに比べ高くになっている。また、衝突部位の分布をみると、車両両面の比率が40.3％で高いが、他のクラスに比べ左右側面の比率が33.0％で高くなっている。最高速度違反の比率が62.5％で高くなっている。

⑥ ワゴン
夜間事故の比率が61.6％である。運転者の年齢階は30歳～49歳の比率が34.8％、24歳以下の比率が31.1％で若者と中年の比率が高い。事故類型でみると、車両相互事故と車両単独事故が半々である。車両単独事故での危険認知速度の平均値は約75km/hである。

⑦ 1BOX
夜間事故の比率が56.1％でファミリー軽乗用車について低くなっている。運転者は30歳～49歳の年齢階の比率が53.5％で高い。事故類型でみると、車両相互事故の比率が56.7％で、この中では正面衝突、出合頭事故の比率が高い。車両単独事故の比率は41.9％で、危険認知速度の平均値は約65km/hである。また、衝突部位の分布をみると、車両両面の比率が48.3％、左両面の比率が15.4％、右両面の比率が14.8％で高く、左右側面の比率が17.5％で低くなっている。

⑧ RV
他のクラスに比べ夜間事故の比率が71.3％で高く、特に2時～6時の深夜から早朝にかけての事故が全体の59.3％を占めている。運転者は24歳以下の若者の比率が48.1％、25歳～29歳の比率が20.4％で29歳以下の比率が68.5％で高い。事故類型でみると、車両単独事故の比率が65.7％で高く、危険認知速度の平均値は約70km/hである。
b. 運転者の年齢層別死亡事故台数の比率

<table>
<thead>
<tr>
<th></th>
<th>セダン A</th>
<th>セダン B</th>
<th>セダン C</th>
<th>スペシャリティ</th>
<th>ファミリー軽</th>
<th>ワゴン</th>
<th>1BOX</th>
<th>R</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% 20%</td>
<td>40.7</td>
<td>26.4</td>
<td>40.2</td>
<td>71.7</td>
<td>33.9</td>
<td>31.1</td>
<td>14.8</td>
<td>48.1</td>
<td>50.6</td>
</tr>
<tr>
<td>20% 40%</td>
<td>11.0</td>
<td>11.0</td>
<td>13.9</td>
<td>15.4</td>
<td>9.8</td>
<td>16.5</td>
<td>8.7</td>
<td>20.4</td>
<td>63.5</td>
</tr>
<tr>
<td>40% 60%</td>
<td>26.2</td>
<td>33.9</td>
<td>27.7</td>
<td>10.5</td>
<td>28.6</td>
<td>34.9</td>
<td>53.5</td>
<td>22.2</td>
<td>65.7</td>
</tr>
<tr>
<td>60% 80%</td>
<td>14.3</td>
<td>23.3</td>
<td>14.4</td>
<td>22.2</td>
<td>18.0</td>
<td>13.4</td>
<td>18.9</td>
<td>22.2</td>
<td>63.5</td>
</tr>
<tr>
<td>80% 100%</td>
<td>7.4</td>
<td>5.4</td>
<td>8.8</td>
<td>12.2</td>
<td>9.8</td>
<td>4.0</td>
<td>8.1</td>
<td>5.5</td>
<td>8.3</td>
</tr>
</tbody>
</table>

c. 事故類型別死亡事故台数の比率

<table>
<thead>
<tr>
<th></th>
<th>セダン A</th>
<th>セダン B</th>
<th>セダン C</th>
<th>スペシャリティ</th>
<th>ファミリー軽</th>
<th>ワゴン</th>
<th>1BOX</th>
<th>R</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>人対車両</td>
<td>52.7</td>
<td>56.8</td>
<td>44.0</td>
<td>34.7</td>
<td>68.7</td>
<td>48.8</td>
<td>56.7</td>
<td>32.4</td>
<td>65.7</td>
</tr>
<tr>
<td>車両相切</td>
<td>46.8</td>
<td>42.7</td>
<td>55.7</td>
<td>65.1</td>
<td>28.8</td>
<td>50.6</td>
<td>41.9</td>
<td>65.7</td>
<td>65.7</td>
</tr>
<tr>
<td>車両単独</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.9</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

d. 単独事故の危険認知速度累積構成率

図-12 乗用車の乗員死亡事故での事故要因の分析結果の比較（全乗員）

まとめ

1. 自動車の車種別・乗用車のクラス別に事故との相関を分析したが、評価指標により各車種あるいは各クラスの順序が変わってくる。
2. 自動車におけるベルト着用乗員の分析結果は、全乗員の分析結果に比べ全ての評価指標で評価値が低くなっていている。更に、ベルト着用乗員について各車種間あるいはクラス間の差が小さくなる傾向にある。
3. 乗用車のクラス別分析において、スポーツ&スペシャリティにおける死亡事故では夜間事故、若者、運転者、車両単独事故の構成率が高い。ファミリー軽乗用車における死亡事故では昼間事故、女性運転者、車両相切事故の構成率が高い。他のクラスの死亡事故では、スポーツ&スペシャリティとファミリー軽乗用車の中間の特徴を示す。これらは、運転者の属性（当該車種をもっとも使用する年齢層、時間帯等を含む）が大きく影響していることを示している。
センターの活動を事故防止により役立てるために

日本大学理工学部教授（東京大学名誉教授）
越 正 殿

1. 事故分析の必要性

交通事故の分析の必要性が世の中に広く認められて、財政の不足や過去の事故をシステム化してやってきたことは、誠に喜ばしいことであるが、関係者のご努力を多分するとするものである。しかし、当センターの活動内容も、設立以来4年余りを経て、一旦初心に立ち帰って見直し、再検証をしてよい時期に至ったと考える。

かつて、事故分析の必要性を婦し筆者に対して、ある担当官が事故分析をするか、あるいは事故が減るというのが、と詰め寄ったことがある。当然のことながら、筆者分析をしただけでは事故が減るはずはない。ここまでは誰もがわかる自明の理である。

然らざる故にどんな事故分析をするべきなのであろうか。この点にとどまり、どうも必ずしも見解が一致していないことはないようであり、筆者には思われるものである。そこで、このことについての筆者の見解をここに述べさせて頂き、ご批判を仰がたいと考えるものである。

事故分析の効果は、事故分析の結果が実際の事故対策の効果増大に反映されてはじめて現れるものである。という点については何人も否定しないであろう。問題はどのように反映させるのか、という点にある。

事故対策の効果増大の方策には、大別して3つの種類があって、既存の存在する効率的実施と、既存手段の導入及び未定手段の発見とある。事故分析はまさにこの3つのために行われるんだと筆者は考える。

2. 既存手段の効果的実施

中央分離帯や交通信号や飲酒運転取締りといった手段は、在来から実施されてきた既知の安全対策である。しかももっとも効果の大きい箇所に中央分離帯が設置され、中央分離帯への投資と信号への投資の配分が、両者併せた事故防止効果が最大となるようになされ、飲酒運転取締りは場所、時刻、頻度などの点で最も効果が高い方法で行われたか、という点になるときめて心となる。大部分の場合、そのような時効はなされなかったかと疑わしいと筆者は見る。

これらのことをみて、資金や労力の過度の投下を免ることによって、同じ資金と労力でより大勢の減少をもたらすことができる。

さて、この時期のために必要な情報は、各交通手段の事故対策の前後効果評価である。それぞれの手段がどのように減少するかを決定する際に、その結果にどのような事故被害が増えるかを予測することが求められる。この場合には過去の実施例が存在しないため、事故の形態や座標位置などの分析から間接的に推定するという方法により従来の得られない。事故の種類、調査項目を絞って、相当数の事故について特別な調査を行うことが必要となるであろう。

大型車にABS装着を義務付けたらどうか。いなさまで、ITSの安全機能の各々がどれほどの効果をもたらすであろうか、についても同様である。いずれも、仮説の検証という形の、明快な目的を持った調査と分析が必要となる。

3. 新規手段の導入

シートベルト着用の全席義務化のように、手段としては既知だが、未定実施されたような事故対策を、導入するかどうかを決定する際に、それによってどのように事故被害が増えるかを予測することが求められる。この場合には過去の実施例が存在しないので、事故の形態や座標位置などの分析から間接的に推定するという方法により従来の得られない。事故の種類、調査項目を絞って、相当数の事故について特別な調査を行うことが必要となるであろう。

4. 未知手段の発見

これまでも想像もしなかったような事故対策手段があっって、個別事故を丹念に調査することによってこれが見られた未知の手段が自ずから浮かび上がってくるであろう、と信じている人々もあると思う。

そのようなことは絶対に意義である、と断言することはできないが、可能性はきわめて低いものと筆者は考える。

仮にこのような手段を発見したとしても、それがあたかも魔法の杖の如きに絶大な事故防止効果を発揮する、などとはどうも期待できない。このようなことを期待して、個別事故の無目的を消去する目的の調査がどの点を発掘することは、調査・分析の効率という点で遅ければならない。

5. 早く役に立つ調査分析を

目的を明快にした効果のよい調査と分析に精力を集中し、得られた結果を安全施策に活かして、1日も早く、1件でも多くの事故を防止したいものである。